Actinide(Lanthanide)-Noble Metal Alloy Phases, Preparation and Properties

B. ERDMANN AND C. KELLER

Institut für Radiochemie, Kernforschungszentrum, Karlsruhe, Postfach 3640, Germany

Received June 14, 1972

Actinide (A=Th-Cm)-noble metal phases with platinum, palladium, rhodium, and iridium (=B)- and lanthanide-noble metal phases with platinum and palladium have been prepared by reduction of corresponding oxides or fluorides in the presence of noble metals by extremely purified hydrogen. Alloy phases of composition AB₂, AB₃, and/or AB₅ have been identified, most of which crystallize in the Cu₂Mg, Cu₃Au, Ni₃Ti, Cd₃Mg, Ni₅U, and Pt₅Sm types of structure. The lattice constants of isostructural series show a trend which also is known for the radii of the actinide elements. Analytical data, self-irradiation effects, magnetic data, nuclear γ resonance spectra, and thermal behaviour of selected alloy phases as well as the preparation of alloy phases of some other transition and main group elements, e.g., Zr, Hf, Nb, Ta, Mg-Ba, are reported.

Introduction

In the course of our investigations on the phase equilibria in the systems $UO_2-UO_3-REO_{1.5}$ (RE = La-Lu), the following unexpected observations have been made:

- a. In the fluorite phases (U,RE)O_{2+x}, it is not possible to reduce uranium in higher valence state with hydrogen quantitatively to U(IV) at a temperature below 1000°C; this phenomenon is due to the especially high stability of the fluorite lattice (1).
- b. At higher temperatures and when using noble metal crucibles, we observed weight changes which indicated a reduction of the uranium to valences below four. The metallic appearance of the reaction product indicated the possibility of a chemical reaction between the substance and the crucible material.

Detailed studies confirmed this assumption and we were able to demonstrate that the hydrogen reduction of metal oxides in the presence of noble metals—the so-called coupled reduction (2, 3, 8, 13)—can be applied to prepare very pure noble metal alloy phases not only with actinide elements but also with lanthanide (+ Sc, Y) and alkaline earth elements, Ti, Zr, Hf, V, Nb, Ta, and even with lithium. Earlier results of these studies have already been published elsewhere (2).

Experimental

Mixtures of oxides, carbonates and/or fluorides [e.g., actinide dioxides (Th-Cm), Pa2O5, REoxides (RE = La-Lu), $ScO_{1.5}$, $YO_{1.5}$, Li_2CO_3 , MgCO₃, CaCO₃, SrCO₃, BaCO₃, Al₂O₃, TiO₂, ZrO₂, HfO₂, V₂O₅, Nb₂O₅, Ta₂O₅, UF₄, UF₃, ThF₄, NdF₃, GdF₃, ErF₃, CaF₂] with very fine powders of noble metals (Pt, Pd, Ir, Rh) in alumina, iridium, or nickel crucibles placed in an alumina tube were heated in a high temperature furnace. The reduction temperatures ranged between 950 and 1550°C; the reaction times varied from 40 to 60 hr. The temperature needed to achieve complete reduction increased when going from Pt to Ir(Rh); furthermore, alloy phases with a high noble-metal-to-base-metal ratio are more easily prepared than compounds having a lower ratio. This means, e.g., that Pt₅Cm may be prepared at about 1200°C, whereas the preparation of Ir(Rh)-compounds (e.g., Ir₂Cm, Rh₃Cm) requires temperatures of 1550°C. Temperature measurements were performed using Pt-Pt/Rh thermocouples. In nearly all cases the reaction product was a fine powder which was directly suitable for X-ray analysis; in some cases, small crystals ($\sim 0.2 \times 0.2 \times 0.2$ mm) were obtained.

The lattice parameters of the cubic compounds were determined by the Debye-Scherrer method, while the hexagonal and orthorhombic com-

Copyright © 1973 by Academic Press, Inc. All rights of reproduction in any form reserved. pounds were analyzed by the diffractometer method. The lattice constants were computed on the IBM 360/65 by use of Program B106 (6). Reductions took place only with hydrogen at an extremely low partial pressure of oxygen and water vapour. The hydrogen used was purest bomb hydrogen available with an oxygen and water vapour content of about 10 ppm each. In order to prepare high purity hydrogen, several steps of purification were necessary. After passing through heated (~500°C) Ti-cuttings, heated Pt-asbestos, and molecular sieves, the hydrogen was further purified by bubbling through a series of three bottles containing liquid K-Na alloy [approximate composition K:Na = 2.5:1 (7)] and finally cooling to liquid nitrogen temperature to remove organic contaminants. The hydrogen thus purified had an oxygen content of less than 10⁻²⁶ Torr and a partial water vapour pressure of less than 10^{-7} Torr. The oxygen content of the purified gas was determined by using a ThO₂ solid galvanic cell with Fe/FeO as the reference electrode; the water vapour content was measured by a hygrometer (type PA 1000, Panametrics Inc., Waltham, MA). The above-described purification apparatus was also used for the preparation of highly purified helium (oxygen content $\leq 10^{-19}$ Torr). Coupled reductions for the preparation of most of the Pt-, and all Pd-, Ir- and Rh-alloy phases were unsuccessful when performed with two commercial hydrogen diffusion apparatus supplied by different firms.

All investigations with radioactive materials were carried out in glove boxes. The following nuclides were used in this work (degree of purity in brackets): ${}^{231}Pa_2O_5$ (98%), ${}^{237}NpO_2$ (99.9%), PuO₂ (99.9%, ~92%) ${}^{239}Pu + 7\%$ ${}^{241}Pu$), ${}^{241}AmO_2$ (99.9%), and CmO₂ (98%; 94%) ${}^{244}Cm + 2\%$ ${}^{245}Cm + 4\%$ ${}^{246}Cm$). Natural thorium and uranium were of nuclear grade quality. The platinum metals used had a purity of \geq 99.9%; the base metal oxides used were of the best high quality available (W. C. Heraeus, Hanau/Germany). The quantities of oxides applied in the experiments amounted to about 5–2000 mg, depending on the base metal available. A very detailed description of the experimental part is given in (3).

Attempts to prepare alloy phases of the actinide elements with ruthenium, osmium, nickel, or cobalt have been started.

Results

A. Noble Metal (Pt, Pd, Ir, Rh)-Actinide Alloy Phases

The noble metal (B = Pt, Pd, Ir, Rh)-actinide (A = Th-Cm) alloy phases which we have prepared up to the present date by this "coupled reduction" are summarized in Table I. In the course of this investigation, 20 compounds have been prepared for the first time, which are listed in Table II together with preparation conditions, their structure types, and lattice constants.

The intermetallic phases prepared by coupled

NOBLE METAL (Rh, Ir, Pd, Pt)-ACTINIDE ALLOY PHASES PREPARED BY COUPLED REDUCTION DURING THIS WORK								
	Th	Ра	U	Np	Pu	Am	Cm	Cf
Rh					Rh₂Pu	Rh₂Am	(Rh ₂ Cm)	
	Rh₃Th	Rh ₃ Pa ^d	Rh ₃ U	Rh ₃ Np	Rh₃Pu	Rh ₃ Am	Rh ₃ Cm	
Ir				Ir ₂ Np ^a	Ir ₂ Pu ^a	Ir ₂ Am ^a	Ir ₂ Cm ⁴	
		Ir ₃ Pa	Ir₃U					
Pd		<u> </u>		Pd ₃ Np	Pd₃Pu	Pd₃Am	Pd ₃ Cm	
	Pd₄Th		Pd₄U					
			Pd₅U					
Pt					Pt₂Pu	Pt₂Am	Pt₂Cm	
	Pt₃Th ^ø	Pt ₃ Pa	Pt₃U	Pt ₃ Np	Pt₃Pu			
	Pt₅Th	Pt ₅ Pa	Pt₅U	Pt ₅ Np	Pt₅Pu	Pt₅Am	Pt₅Cm	(Pt ₅ Cf) ^c

TABLE I

^a No Ir₃A compounds exist.

^b Not obtained in pure form.

^c Only indirect proof.

^d Compounds which are underlined were prepared for the first time.

TABLE II

PREPARATION AND STRUCTURE OF NOBLE METAL (Rh, Ir, Pd, Pt)–ACTINIDE ALLOY PHASES PREPARED FOR THE FIRST TIME

	Reduction	Structure	Lattice constants (Å) ^a		
Compound	(±50°C)	type	<u>a</u>	b	c
Rh ₃ Pa	1550	Cu₃Au	4.037		
Rh₃Np	1550	Cu ₃ Au	4.034		
Rh ₂ Am	1550	Cu ₂ Mg	7.548		
Rh ₃ Am	1550	Cu ₃ Au	4.098		
Rh ₃ Cm	1550	Cu ₃ Au	4.106		
Ir ₃ Pa	1550	Cu₃Au	4.047		
Ir ₂ Np	1550	Cu ₂ Mg	7.483		
Ir ₂ Am	1550	Cu ₂ Mg	7.550		
Ir ₂ Cm	1550	Cu ₂ Mg	7.561		
Pd₃Np	1350	Cu ₃ Au	4.069		
Pd ₃ Am	1300	Cu ₃ Au	4.158		
Pd ₃ Cm	1300	Cu ₃ Au	4.147		
Pt ₃ Pa	1250	Cd ₃ Mg(hex) ^b	5.704		4.957
Pt ₅ Pa	1200	Ni ₅ U	7.413		
Pt ₃ Np	1300	Ni₃Ti(hex)	5.822		9.575
Pt ₅ Np	1250	Pt₅Tm	5.225	9.134	27.43
Pt₂Am	1400	Cu ₂ Mg	7.615		
Pt ₅ Am	1200	Pt₅Sm	5.319	9.090	26.42
Pt ₂ Cm	1400	Cu ₂ Mg	7.625		
Pt₅Cm	1250	Pt₅Sm	5.329	9.108	26.38

 $^{a}\pm 0.003$ Å for cubic compounds; ± 0.010 Å for hexagonal or orthorhombic compounds.

^b Hex, hexagonal.

reduction, compiled in Table III, have previously been obtained by direct syntheses from the metallic components (for detailed references, 3, 5, 7, 10, 25-28). Preparation of Pt₃Th and Pt₄Th by coupled reduction was not yet possible up to temperatures of 1600°C.

The structure of the Pt₅A phases (A = Th, Np-Cm) was determined by comparison with compounds of the Pt₅RE type which were prepared by coupled reduction and investigated by Bronger (8). The hitherto unknown structure of Pt₅Th (9) and Pt₅Pu (10, 11) proved to be the same as that of Pt₅Sm; Pt₅Pa and Pt₅U crystallize in the cubic Ni₅U-structure type.

In the Ir-Pa and Ir-U systems, the alloy phases with 3:1 composition having ordered copper-gold structure are the compounds with the highest Ir content, whereas, for the transuranium elements, no such compounds but only alloy phases with 2:1 composition exist. These intermetallic phases are of Laves-phase type with cubic Cu_2Mg structure.

The platinum-actinide systems show some interesting features. In the case of the light actinide systems, compounds with 2:1, 3:1, and 5:1 alloy phases can be detected; it was not yet possible, however, to prepare the compounds Pt₂Th, Pt₂U (both are already prepared by common metallurgical techniques) and "Pt₂Np" yet unknown by coupled reduction. For the transplutonium elements, however, there exist only the 2:1 and 5:1 phases. Starting mixtures with ratios Pt: $AmO_2 = 3:1$ and $Pt: CmO_2 = 3:1$ yielded two-phase products consisting of Pt₂Am and Pt₅Am and Pt₂Cm and Pt₅Cm, respectively. As has been shown for the platinum-uranium system, the Pt_3U and Pt_5U alloy phases take up neither uranium nor platinum into solid solution, since no change in lattice parameters can be detected when varying the Pt: U ratio.

The structure of nearly all alloy phases could be determined by comparison with known types of structures. The 2:1 compounds crystallize in the cubic Laves phase type, while most 3:1 phases have the ordered Cu₃Au structure type. Deviation from this structure type could be observed only for the platinum alloy phases of the light actinide elements. As can be seen from the data of Tables II and III, four different types of structures were found for the 3:1 compounds of the platinum systems. Pt₃Th is the only compound whose type of structure is unknown. The Pt₃Pa and Pt₃U alloy phases crystallize in the hexagonal Cd₃Mg structure type, Pt₃Np has the hexagonal Ni₃Ti lattice, while the Pt₃Pu phase has the expected Cu₃Au structure type. This fact is remarkable because no case has been reported as yet in which a simple compound of three neighbouring elements in either the lanthanide or the actinide series has the same stoichiometric formula but different lattice structures. The structures of these different lattice types, however, are very similar, only the stacking order being different.

The lattice constants of an isostructural series follow a trend which is generally known when comparing the radii of the actinide elements. In the case of the Ir_2M (M = Th, U-Cm) and Rh₃M (M = Th-Cm) compounds, this may be seen in Fig. 1. A minimum in the lattice constants is to be seen between uranium and neptunium, both metals of which have been shown to possess the highest valence in their metallic state. Such a dependence of molar volume on the atomic number could not be observed in the series of platinum compounds because of the different types of structures, having more or less dense packing of the atoms.

Because of the inherent high radioactivity an increase in the lattice constants can be observed for the compounds Pd_3Am and Pd_3Cm , which seems to follow an exponential trend as has been found earlier for oxides and carbides of some transuranium elements. The increase in the lattice

	Reduction temperature	Structure	Lattice constants (Å) ^a		
Compound	(±50°C)	type	a	b	c
Rh₃Th	1550	Cu₃Au	(4.139)		
Rh₃U	1550	Cu ₃ Au	3.990		
Rh₂Pu	1550	Cu ₂ Mg	7.488		
Rh ₃ Pu	1550	Cu ₃ Au	4.042		
Ir₃U	1550	Cu ₃ Au	4.037		
Ir ₂ Pu	1550	Cu ₂ Mg	7.518		
Pd₄Th	1400	Cu ₃ Au	4.113		
Pd₄U	1250	Cu ₃ Au	4.069		
Pd₅U	1200	unknown			
Pd₃Pu	1300	Cu ₃ Au	4.095		
Pt₅Th	1200	Pt₅Sm	5.364	9.157	26.60
Pt₃U	1200	Cd ₃ Mg(hex) ^b	5.753		4.89
Pt₅U	1200	Ni₅U	7.417		
Pt₂Pu	1400	Cu ₂ Mg	7.633		
Pt₂Pu	1200	Cu₃Au	4.105		
Pt ₅ Pu	1200	Pt ₅ Sm	5.314	9.100	26.51

TABLE III

KNOWN INTERMETALLIC PHASES OF THE ACTINIDES WITH NOBLE METALS (Rh, Ir, Pd, Pt) PREPARED BY COUPLED REDUCTION WITH PREPARATION CONDITIONS AND STRUCTURE

^a The lattice constants are values determined by the authors: ± 0.003 Å for cubic compounds, ± 0.010 Å for hexagonal or orthorhombic compounds.

^b Hex, hexagonal.

Fig. 1. Metallic radii of the actinide elements and lattice constants of the alloy phases Ir_2M (M = Th, U-Cm) and Rh₃M (M = Th-Cm). The lattice parameter of Rh₃Th, Ir_2Th , and Ir_2U are taken from Refs. (12), (23), and (24), respectively.

parameter is higher for $Pd_3^{244}Cm$ (Fig. 2) than for the corresponding ^{241}Am compound by a factor of about three. For $Pd_3^{244}Cm$, the change in the lattice constant varies from a = 4.147 Å at the time of preparation to a = 4.167 Å after about a week, the corresponding values for $Pd_3^{241}Am$ are a = 4.158 Å (at preparation) to 4.165 Å after 43 days. Mathematically the changes of lattice constants for these two compounds may be given as follows:

 $\frac{\Delta a}{a} = 5.7 \times 10^{-3} \left(1 - e^{-1.3 \times 10^{-2} xt[h]}\right) \text{ for Pd}_{3}^{244} \text{Cm},$ $\frac{\Delta a}{a} = 1.7 \times 10^{-3} \left(1 - e^{-8.5 \times 10^{-2} xt[d]}\right) \text{ for Pd}_{3}^{241} \text{Am}.$

FIG. 2. Increase in the lattice constant of $Pd_3^{244}Cm$ resulting from self-irradiation.

Mössbauer studies of Pt₃Np at 4.2°K have shown that the nuclear γ -resonance spectrum of this compound consists of a somewhat broadened single line ($\Gamma = 6.4 \pm 0.3$ mm/sec) with an isomer shift of $\delta = -0.2$ mm/sec relative to NpO₂ (Am(Th) as the source), indicating a formal zero-valency of neptunium, for Np-metal: $\delta =$ -0.13 cm/sec and +0.13 cm/sec, respectively, reflecting the two inequivalent lattice sites of α -Np (5).

Magnetic measurements with a magnetic balance working on the Faraday principle were performed on the compounds Pt_3Np and Pd_3Pu in the temperature region 4.2–280°K and 1.8– 296.3°K, respectively. The magnetic measurements show that Pt_3Np and Pd_3Pu follow the Curie-Weiss relationship up to low temperatures.

Pt₃Np: 47–280°K,
$$\theta = -47$$
°K,
 $\mu_{ett}(280^{\circ}K) = 2.95 \,\mu_{B};$
Pd₃Pu: 134–296°K, $\theta = -108^{\circ}K,$
 $\mu_{ett}(296 \, 3^{\circ}K) = 0.907 \,\mu_{B};$

At very low temperatures, both compounds show magnetic transitions and become antiferromagnetic. Figure 3 shows this effect for the compound Pd₃Pu. The Néel-temperature has been determined to be 20.5° K for Pd₃Pu and 22° K for Pt₃Np. Pd₃Am shows a quite different behaviour, which as yet could not be explained. The most striking feature is the strong dependence of susceptibility on the magnetic field strength. On extrapolation to infinite magnetic field strength, the magnetism of Pd₃Am follows the Curie-Weiss relationship up to at least 10° K (21).

B. Noble Metal(Pt, Pd, Rh)-Lanthanide(+Sc, Y) Alloy Phases

The preparation of the Pt_5RE phases (RE = La-Tm, Y) by coupled reduction was first performed by Bronger (8) who also prepared some Pt_3RE phases (RE = Ho-Lu, Sc).

FIG. 3. Magnetic behaviour of Pd_3Pu as a function of temperature. The small points at low temperatures are measuring points.

While preparing the compounds Pt_5RE (RE = La-Tm, Y) during this work, we could reproduce the results of Bronger (8). The preparation of the phases "Pt₅Yb" and "Pt₅Lu", however, was unsuccessful; the experiments at 1200–1400°C from initial mixtures Pt:YbO_{1.5}(LuO_{1.5}) of 5:1 resulted in two-phase products of Pt₃Yb + Pt and Pt₃Lu + Pt, respectively. As there was no change in lattice parameters compared with the pure phases, it is possible that the compounds "Pt₅Yb" and "Pt₅Lu" do not exist. Preparation of most Pt₅RE phases was accomplished at 1200°C; in the case of Pt₅Sm and Pt₅Eu, 1300°C was necessary to complete the reaction.

The Pt_cRE compounds show three different types of structure, described by (8) as a-, b-, and *c*-type. The phases of the *a*-type Pt_5La , Pt_5Ce , Pt₅Pr, and Pt₅Nd are of the hexagonal Cu₅Catype (22); Pt₅Sm, Pt₅Eu, and Pt₅Gd belong to the *b*-type which show orthorhombic symmetry. The phases of the *c*-type Pt₅Tb, Pt₅Dy, Pt₅Ho, and Pt, Er, also of orthorhombic symmetry, are very similar to the phases of the *b*-type. A further change in structure may occur at Pt₅Tm. This is not certain since "Pt₅Yb" and "Pt₅Lu" are probably nonexistent. According to experimental results for the Pt-U-system, the phase Pt₅La takes up neither lanthanum nor platinum into solid solution at 1200°C, since no change in lattice parameters can be detected when varying the Pt: La ratio.

Apart from the Pt₅RE compounds, we were

able to prepare other types of alloy phases of the lanthanides such as Pt_3RE (RE = Tb-Lu, Sc, Y), Pt_2RE (RE = La-Gd) and Pd_3RE (RE = La-Lu, Sc, Y) in addition to Rh_3Sc . All these compounds have been prepared earlier by conventional techniques, while Bronger *et al.* (8, 13, 14) were only successful in preparing the compounds Pt_3RE (RE = Ho-Lu, Sc). Table IV shows the phases Pt_3RE (RE = Tb-Lu, our Sc) prepared during this work; the lattice constants are values determined by the authors.

In case of the lanthanides, RE = La-Gd, no 3:1 phases are existent. Coupled reduction at 1400°C of initial mixtures Pt: REO_{1.5} (RE = La-Gd) = 3:1 resulted in two-phase products of Pt₂RE and Pt₅RE. This observation is in accordance with results of Harris (15), while Moriarty *et al.* (16, 17) have reported compounds of the Pt₃RE-type for RE = La-Gd. Moreover, the lattice constants for these compounds given by Moriarty *et al.* (16, 17) are smaller than those for the phases Pt₃RE (RE = Tb-Lu), and this fact is contrary to the trend of the metallic radii of the lanthanide elements.

Starting from this observation we were able to prepare the Pt_2RE (RE = La-Gd) compounds which are listed in Table V.

All compounds of the type Pd_3RE (RE = La-Lu, Sc, Y) have been prepared earlier by

TABLE IV

Alloy Phases Pt_3RE (RE = Tb-Lu, Sc, Y) and Rh_3Sc with Cu_3Au Type of Structure Prepared by Coupled Reduction

Compound	Reduction temperature $(\pm 50^{\circ}C)$	Lattice constant a (Å) ^b		
Rh ₃ Sc	1550	3,909		
Pt₃Sc ^a	1250	3.953		
Pt ₃ Y	1300	4.069		
Pt ₃ Tb	1300	4.085		
Pt ₃ Dy	1250	4.073		
Pt ₃ Ho ⁴	1200	4.064		
Pt ₁ Er ^a	1200	4.052		
Pt ₁ Tm ⁴	1200	4.040		
Pt ₃ Yb ^a	1200	4.035		
Pt ₃ Lu ⁴	1200	4.027		

" These compounds were also prepared by Bronger (δ) by means of coupled reduction.

^b The lattice constants are values determined by the authors, ± 0.003 Å.

TABLE V

Alloy Phases Pt_2RE (RE = La-Gd) with Cu_2Mg Type of Structure Prepared by Coupled Reduction⁴

Compound	Lattice constant a (Å) ^b	Compound	Lattice constant $a(\mathbf{A})^{b}$
	- (-)		<u> </u>
Pt ₂ La	7.781	Pd₃La	4.224
Pt ₂ Ce	7.729	Pd ₃ Ce	4.141
Pt ₂ Pr	7.713	Pd₃Pr	4.135
Pt ₂ Nd	7.689	Pd₃Nd	4.120
Pt ₂ Sm	7.660	Pd ₃ Sm	4.101
Pt ₂ Eu	7.641	Pd ₃ Eu	4.093
Pt ₂ Gd	7.637	Pd ₃ Gd	4.089
		Pd ₄ Tb	4.074
	4400 . 5000	Pd ₃ Dv	4.067

^{*a*} Reduction temperature = $1400 \pm 50^{\circ}$ C.

^b The lattice constants are values determined by the authors, ± 0.003 Å.

conventional metallurgical techniques, while Schulz et al. (14) did not succeed in preparing the phases by coupled reduction. Our detailed studies showed that for preparation of these compounds the experimental conditions, particularly the purity of the hydrogen, must be rigidly controlled, otherwise the experiments result in mixtures of oxides and palladiumlanthanide(+ Sc, Y)-mixed crystals. While Hutchens et al. (18) were able to prepare all Pd₃RE phases except Pd₃Tm, this work gives the lattice constant of the pure phase Pd₃Tm for the first time. The phases prepared by coupled reduction are compiled in Table VI.

C. Noble Metal (Pt, Pd, Ir, Rh) Alloy Phases of Transition and Main Group Elements

In addition to the actinide and lanthanide (+ Sc, Y), a lot of intermetallic phases of transition and main group elements were prepared by this method of coupled reduction. All of these compounds have been prepared earlier by conventional metallurgical techniques. Some of them (noted with asterisks in the enumeration below) have been formerly obtained by Bronger and co-workers (8, 13, 14) by means of coupled reduction. The lattice constants of these compounds have been determined in this work [for experimental details, see (3)]: Pt₇Li*, Pd₃Mg, Pt_2A (A = Ca^{*}, Sr^{*}, Ba^{*}), Pt_3A (A = Mg^{*}, Sr^{*}, Al*), Pt_5A (A = Ca*, Sr*, Ba*), Pd_5A (A = Sr, Ba), Pt_2Si , Pd_2Si^* , Pt_3A (A = Ti*, Zr, Hf), Pd_3A (A = Ti*, Zr, Hf), Ir_3A (A = Ti*, Zr, Hf),

Alloy Phases Pd_3RE (RE = La-Lu, Sc, Y) with
Cu ₃ Au Type of Structure Prepared by Coupled
REDUCTION ^a

" Reduction temperature = $1350 \pm 50^{\circ}$ C.

Pd₃Ho

Pd₃Er

Pd₃Tm

Pd₃Yb

Pd₃Lu

Pd₃Sc

Pd₃Y

 $^{\text{b}}$ The lattice constants are values determined by the authors, ± 0.003 Å.

4.058

4.051

4.044

4.040

4.029

3.969

4.061

Rh₃A (A = Ti^{*}, Zr, Hf), Pt₃A (A = Cr, V, Nb, Ta), Pd₃A (A = Cr, V, Nb, Ta), Ir₃A (A = V, Nb, Ta), Rh₃A (A = V, Nb, Ta), Ir₃Cr, Rh₃Cr, Pt₃Mn, Pd₃Mn.

Analyses

Some comments should be made concerning the analytical purity of the alloys. Because the noble-metal-to-base-metal ratio does not change during the coupled reduction, the ratio of the elements in the final products is the same as in the starting mixtures; this has been demonstrated by chemical analyses on several characteristic compounds. Exceptions to this rule will be discussed later on. Determinations of the oxygen content were made on most of our alloy phases; some phases were also analyzed for nitrogen and hydrogen. All determinations were performed by vacuum hot extraction. In Table VII, characteristic and not necessarily the best analytical data are summarized for some noble metal alloy phases.

The contents of nitrogen and hydrogen are very low, especially when cooled in a helium gas

TABLE VII

ANALYTICAL DATA FOR NOBLE METAL ALLOY PHASES

Compound	O ₂ (ppm)	N ₂ (ppm)	H ₂ (ppm)
Ir ₃ U	1600	<100	<20ª
Ir₃Zr	900	<100	<20ª
PdaLu			<10 ^a
Pd₄U			15ª
Pt ₃ Np	580	<100	80
Pt ₅ Np	540	200	20
Pt ₃ Pu	150	<100	300
Pt ₅ Pu	230	<100	140
Pt₅U	330		10 ^a
Pt ₅ Th	65		

^a Cooled in a highly purified helium gas stream; all other cooled in H₂.

stream. The oxygen content is somewhat higher but exceeds 1000 ppm only in one case, most values being between 300 and 500 ppm. This excludes the stabilization of these phases by the incorporation of oxygen in the different lattices as has been observed for some inverse perovskite compounds of, e.g., niobium.

In the course of our investigations, we also determined the oxidation ranges of some representative intermetallic compounds. All determinations were performed under 1 atm of oxygen by means of thermogravimetric analysis using a Mettler thermomicrobalance. Oxidation ranges (the maxima of the oxidation ranges are in parentheses) of 400-600°C (520) for Pt₅Th, 360-420°C (370) for Pt₃U, 320-560°C (430) for Pt₅U, 250-650°C (470) for Pt₃Np, 310-620°C (530) for Pt_5Np , $320^{\circ}-580^{\circ}C$ (490) for Pt_2Pu , 350-530°C (470) for Pt₃Pu, 450-600°C (560) for Pt₅Pu, 500-800°C (630) for Pd₃Pu, and 390-630°C (450) for Pt₅La, 390-600°C (550) for Pt₅Eu, 450-600°C (560) for Pt₅Tb, and 470- $680^{\circ}C$ (570) for Pt₅Tm were observed.

Preparation of Metals (Am, Cf, Ca-Ba, Li) from Noble Metal Alloy Phases

When preparing platinum-americium alloy phases at temperatures above 1300°C, we observed mainly a loss of americium in the reaction product. Detailed studies showed that these intermetallic phases are decomposed at temperatures of 1300° C or higher in vacuum or inert gas atmospheres to yield solid noble metal and americium vapour which could be condensed at cooled parts of the reaction apparatus. Müller (19) was able to prove that this method could be used to prepare very pure americium metal.

We also have been able to demonstrate that not only americium but also other volatile metals (e.g., Cf, Ca-Ba, Li) could be prepared by this method (20). It is interesting to note that we were able to prepare calcium also from the mineral fluorite practically in one step by coupled reduction to the compounds Pt_2Ca or Pt_sCa followed by decomposition in vacuum at higher temperatures.

This means that metals like Am, Cf, Ba-Ca, and Li can be prepared by direct hydrogen reaction of the corresponding oxides, the noble metals only serving as a catalyst. This is shown by the following scheme for, e.g., Ca:

It shows that the platinum, which results from the thermal decomposition of the intermetallic phase, can be mixed with new starting materials (CaO, CaCO₃, CaF₂) for the preparation of new intermetallic compounds.

Acknowledgments

The authors are much indebted to U. Berndt, Institut für Radiochemie, for his indispensable assistance; to Miss Dr. H. Schneider, Institut für Material- und Festkörperforschung and Dr. H. Kutter, Europäisches Institut für Transurane (Euratom), for the performance of hot extractions; to Dr. B. Kanellakopulos, Institut für Heiße Chemie, for the magnetic measurements all Kernforschungszentrum Karlsruhe, and Prof. Dr. P. Gütlich, Technische Hochschule Darmstadt, for the performance of the Mössbauer spectrum. Thanks are also due to the "Deutsche Forschungsgemeinschaft" and the "Fonds der Chemischen Industrie" for financial support.

References

- 1. H. G. DIEHL AND C. KELLER, J. Solid State Chem. 3, 621 (1971).
- B. ERDMANN AND C. KELLER, J. Nucl. Chem. Letters 7, 675 (1971).
- 3. B. ERDMANN, Dissertation Universität Karlsruhe (1971); see also Report KFK-1444 (1971).
- C. KELLER AND B. ERDMANN, Paper presented at the "Third International Transplutonium Element Symposium," Argonne, IL (1971).
- 5. C. KELLER, "The Chemistry of the Transuranium Elements," Verlag Chemie, Weinheim (1971).
- J. GVILDYS, "Programm B 106 zur Berechnung von Gitterkonstanten nach der Methode der kleinsten Fehlerquadrate," Argonne Nat. Lab. 4-29 (1964); changed by H. HAUG, Kernforschungszentrum Karlsruhe (1969).
- 7. M. HANSEN AND K. ANDERKO, "Constitution of Binary Alloys," p. 876, McGraw-Hill, New York (1958).
- 8. W. BRONGER, J. Less-Common Metals 12, 63 (1967).
- 9. J. R. THOMSON, J. Less-Common Metals 6, 3 (1964).
- V. I. KUTAITSEV, N. T. CHEBOTAREV, M. A. ANDRIANOV, V. N. KONEV, I. G. LEBEDEV, V. I. BAGROVA, A. V. BEZNOSIKOVA, A. A. KRUGLOV, P. N. PETROV, AND E. S. SMOTRITSKAYA, At. Energ. 23, 511 (1967); Sov. At. Energ. 23, 1279 (1967).
- V. I. KUTAITSEV, N. T. CHEBOTAREV, I. G. LEBEDEV, M. A. ANDRIANOV, V. N. KONEV, AND T. S. MENSHIKOVA, *in* "Plutonium 1965" (A. E. Kay and M. B. Waldron, Eds.), p. 420f, Chapman and Hall, London (1967).
- 12. J. R. THOMSON, Nature (London) 194, 465 (1962).

- W. BRONGER AND W. KLEMM, Z. Anorg. Allg. Chem. 319, 58 (1962).
- 14. H. SCHULZ, K. RITAPAL, W. BRONGER, AND W. KLEMM, Z. Anorg. Allg. Chem. 357, 299 (1968).
- 15. I. R. HARRIS, J. Less-Common Metals 14, 459 (1968).
- 16. J. L. MORIARTY, J. E. HUMPHREYS, R. O. GORDON, AND N. C. BAENZIGER, Acta Crystallogr. 21, 840 (1966).
- 17. N. C. BAENZIGER AND J. L. MORIARTY, Acta Crystallogr. 14, 948 (1961).
- R. D. HUTCHENS, V. U. S. RAO, J. E. GREEDAN, W. E. WALLACE, AND R. S. CRAIG, J. Appl. Phys. 42, 1293 (1971).
- W. MÜLLER, J. Reul, J. C. Spirlet, Atomwirtschaft 17, 415 (1972).
- U. BERNDT, B. ERDMANN, AND C. KELLER, Angew. Chem. 84, 537 (1972); Angew. Chem. Int. Ed. 11, 515 (1972).
- 21. C. KELLER AND B. KANELLAKOPULOS, Unpublished results.
- 22. A. E. DWIGHT, Trans. Amer. Soc. Metals 53, 479 (1961).
- 23. A. E. DWIGHT, J. W. DOWNEY, AND R. A. CROMER, Trans. Met. Soc. AIME (Amer. Inst. Mining, Met. Eng.) 212, 337 (1958).
- 24. T. J. HEAL AND G. T. WILLIAMS, Acta Crystallogr. 8, 494 (1955).
- 25. C. J. SMITHELS, "Metals Reference Book," Vol. 2, 4th Ed., Butterworth, London (1967).
- 26. J. J. PARK AND L. R. MULLEN, J. Res. Nat. Bur. Stand. A 72, 19 (1968).
- 27. J. R. THOMSON, J. Less-Common Metals 5, 437 (1963).
- 28. J. J. PARK, J. Res. Nat. Bur. Stand. A 72, 11 (1968).